
A PROACTIVE PASSWORD CHECKER

Matt Bishop

Technical Report PCS-TR90-152

June 1990

A Proactive Password Checker

Matt Bishop

Department of Mathematics and Computer Science

Dartmouth College

Hanover, NH 03755

ABSTRACT

Password selection has long been a difficult issue; traditionally, passwords are ei-

ther assigned by the computer or chosen by the user. When the computer does the

assignment, the passwords axe often hard to remember, when the user makes the se-

lection, the passwords are often easy to guess. This paper describes a technique, and

a mechanism, to allow users to select passwords which to them are easy to remem-

ber but to others would be very difficult to guess. The technique is site, user, and

group configurable, and allows rapid changing of constraints imposed upon the

passwords. Although experience with this technique has been limited, it appears to

have much promise.

1. Introduction

Computer generation of passwords is a delicate art: the passwords cannot be random, for if

they are users will write them down, yet they cannot be too non-random, for otherwise they could

be easily guessed. The use of pronounceable passwords tries to strike the balance, yet even these

are often difficult to remember. Hence user selection of passwords is in widespread use; unfortu-

nately, many users select easy to guess passwords. In a series of experiments in 1979, roughly 33%

of the passwords appeared in a dictionary and an astonishing 86% of all passwords were guessed

[11]; in similar experiments conducted last year at the Software Engineering Institute, over 21% of

the passwords from many different sites were guessed correctly within one week, and roughly 3%

were found in 15 minutes [9]. Clearly, this is as unacceptable as users writing down their pass-

words.

Two styles of passwords are in use today. The older is the traditional assignment of a pass-

word to an account or role; to access that account or role, the user supplies the password for au-

thentication. The newer is the use of "variable" passwords, including both the one-time password

which changes with every use (for example, a smart card), and the challenge-response protocol, in

which the user is challenged by the system to provide proof of identity, and the user's response is

based upon the specific challenge issued by the system.

In this note we assume the site cannot use a variable password scheme, and consider an im-

Page 1 of 14

provementto thetraditionalscheme.Weintroduceatool,calledaproactive password checker, de-

signed to ameliorate this problem at the source. When a user uses this tool to change (or set) a

password, the proactive password checker runs a number of tests on the proposed password to see

if it can be guessed easily; if so, the user is informed and the password is rejected. Thus, the tool

allows users to select passwords they can remember, but prevents them from choosing passwords

which are deemed unsafe.

The next section of this paper discusses current methods of assigning passwords, and de-

scribes some limits and constraints on them. The section after that enumerates various criteria that

a good password selection technique must meet; we then describe an implementation of a tool that

provides a balance between constraint and memorability. We summarize with a discussion showing

the tool does meet the stated criteria, some experiences, and suggestions for improvements and fu-

ture directions of research and development.

2. Previous Work

While such an idea is not new (indeed, most password changing programs perform some

simple tests on length and character mix), the scope of the proposed tool is radically different in

that it allows for an arbitrary set of tests, thereby giving each site administration the power to de-

cide what passwords are "guessable" without having to reprogram or rewrite the password changer.

By contrast, other password changers have their tests preprogrammed, so system administrators

must accept the ones deemed suitable at the programming site rather than at their own site.

Perhaps the most obvious way to obtain "good" passwords is to have the computer generate

them randomly. If this is done without constraint, one must consider the ability of human beings to

remember those passwords. Miller's summary of experiments [10] indicate that about 8 "chunks,"

or meaningful items (such as digits, letters, or words) can be repeated with perfect accuracy; this

means that at most one random password of 8 "chunks" (or two of 4 "chunks," and so forth) can

be remembered correctly. Given that most people have more than one account, and so must remem-

ber more than one password, most users will write such passwords down, or use some memory aid

that may very well be found and used by a third party.

An interesting suggestion to overcome the tendency of users to write down random pass-

words has been in use at one large installation in which many people must know the operator pass-

words to 40 (or so) computers. It essentially provides each user with a list of passwords altered

using an invertible password algorithm. For example, if the algorithm were "capitalize the third let-

Page 2 of 14

ter andappendthecharacterx," andtheoperator'spasswordfor computerathene were listed as

"gleork" then the real password would be "glEorkx" [6]. This technique is akin to more general

"pass-algorithm" techniques mentioned earlier, but does not involve challenge-response protocols.

On the basis of Miller's summary, it has been suggested ([5], p. 342) that if the password

were somehow made "meaningful," that is, if some association could be found to aid the user's

memory, then the user could memorize considerably more, because the password would itself be-

come a "chunk." One common technique is the use of a pronounceable password, which contains

two or three chunks only; indeed, such passwords are recommended in many guidelines [7]. Per-

haps the most sophisticated such generator was designed for Multics [8], which used a considerable

statistical analysis of English to generate passwords. The problem with such schemes is that the

phonemes - the smallest unit of pronunciation, and hence the "chunk" - are themselves essentially

random, and therefore while this scheme is suited for one or two passwords, users will still write

the passwords down when faced with remembering many different pronounceable passwords for

many machines.

One general problem with computer-generated passwords is the use of a pseudorandom

number generator to produce the passwords. If the period of the pseudo-random number generator

is too short, the password can be easily compromised. Morris and Thompson give a very dramatic

instance of this; an unnamed site generated passwords composed of eight random letters or digits.

To test all 2.8x1012 possible combinations of those characters on the computer used would take

112 years. Unfortunately, the pseudo-random number generator used had a period of 215, so the

3.3× 104 possible passwords could be tested in about 41 minutes- which the attacker did [11].

The alternative to computer generation of passwords is to have the user select his or her

password. As mentioned in the introduction, if the user is allowed to choose a password without

restrictions, the choice may very well be poor. (We should note that the sites involved in the exper-

iments placed simple restrictions of length and character mix on the passwords.) Hence, some re-

strictions are necessary; in the next section, we consider what the nature of the restrictions should

be. First, though, let us examine what makes a password a "poor" choice.

3. Requirements

Exhaustive search for a password will always recover the password; our goal is to make

such recovery as expensive as possible. This implies that an "unguessable" password is one for

which any systematized search for the password is no better than a random search for the password.

Page 3 of 14

Note that this does not mean that the password the user chooses must be as unlikely as possible,

which would imply some special ordering of passwords in order of probability; rather, the goal is

to eliminate any such ordering, because should the attacker discover any such ordering, he could

use that information to guide his search. So, ideally, no one potential password is a better choice

than another [3].

Were it not for the fallibility of human memory, this would mean that computer generation

of random passwords is best. Unfortunately, the limits on the number of"chunks" that a person can

remember, combined with most people needing more than one password, preclude such generation.

However, what may be a meaningful "chunk" to one user may be completely meaningless, and

therefore appear random, to another; so, ideally, passwords should be composed of this kind of

"chunk." Hence for our purposes, we can define the concept of "guessability" as being a measure

of the apparent randomness of the "chunks" to parties other than the person with whom the pass-

word is associated.

Hence some obvious passwords can be ruled "guessable" very quickly. Names, dictionary

words, cartoon characters, and so forth can be quickly guessed. Extending this slightly, simple

transformations of such words should also be deemed "guessable;" for example, most on-line dic-

tionaries do not contain plurals formed by adding "s" to the singular. Yet these should be rejected,

as a common method of generating additional guesses is to add an "s" to nouns in a dictionary.

More subtle are the passwords that seem random to all but a subset of users, or that are

meaningless unless external data is known. For this reason, the determination of whether or not a

password is guessable must use site-specific (or group-specific) and user-specific knowledge. For

example, the password "mhmhdcms" is, on first glance, a random collection of lower-case letters.

However, if the user worked at Mary Hitchcock Memorial Hospital, the Dartmouth College Med-

ical School's teaching hospital, the password becomes fairly obvious and would be one an attacker

would try. As another example, the author's password "Heidiu"'l would be difficult for a random

attacker to guess, unless he knew the author's daughter were named "Heidi Tinfiviel;" then, the d

is distinctive enough so a reasonable guess would be to append "u"' to her first name.

These constraints suggest that current password changing programs are not rigorous

enough, because they apply fixed tests based either on length, character mix, limited personal data,

or word lists. If a word meets the length and character mix requirements, and is not produced by

1. Obviously, this is not his real password.

Page 4 of 14

thespecificsetof programmedtransformationson thepersonaldataor wordlists,it is acceptedand

madethenewpassword.Theproblemis thatfirst, thesepasswordprogramssufferfrom program-

minglimitations (for example,theyuseonly onewordlist, or donotallow theword list to becho-

senon aper-userbasis)andsecond,changingthetransformationsis quite time-consuming,and

may beput off if othermattersaredeemedmore important(for example,programminga testto

checkfor thepresentparticipleof verbsis actuallyquitetricky, yetthis is afairly obvioustransfor-

mationfor anattackerto try).

Bearing this in mind, the only way to enforcethesecriteria in a usable,administrator-

friendly fashionis to havea configurationfile containingteststhatthepasswordcheckerwill use

to determinetheguessabilityof anyproposedpasswordbeforeit is accepted;shouldtheproposed

passwordbedeemed"guessable,"it will berejected.Theuseof aconfigurationfile allowstherapid

changing,or addition,of testswithouthavingto recompileor relink theprogram;also,by design-

ing thelanguageencodingthetestsproperly,it wouldbeableto usesubprograms(suchasthesys-

temspellingchecker)to testaproposedpasswordagainstmanymoreEnglishwordsthanarein the

systemdictionaries.Finally,astheconfigurationfile canbealteredonaper-sitebasis,andtestscan

bebasedon useridentity,it providestheability to tailor theteststo both thesystemenvironment
andtheuser.

Theuseof aconfigurationfile alsosuggeststhaterrormessagescanbeassociatedwith each

test,sothatif theproposedpasswordpassesthetest(andhenceis "guessable"),aninformative er-

ror message, stating the precise reason for rejection, is printed. Such messages would quickly ed-

ucate users on how to choose a good password, and would produce less hostility than messages of

the form "password invalid - no change."

We now describe the design and implementation of a UN1X2-based version of this tool,

which meets all of the requirements above.

4. Implementation of a UNIX Version

The algorithm used by the proactive password changer is straightforward: the user is asked

to type his current password, which is then validated, and is then asked to type the proposed new

password twice (to eliminate typing errors). If the two are the same, the configuration file is read

and its commands executed; these include commands to obtain information about the user, about

the system, and tests through which the proposed password is run. If the proposed password passes

2. UNIX is a Registered Trademark of AT&T Bell Laboratories.

Page 5 of 14

anyof thetests,it is deemedtooeasyto guessandis rejected.(In thiscaseeithertheerrormessage

associatedwith thetest,or a standarderrormessage,isprinted.)If theproposedpasswordfails all

thetests,it is acceptedandtheuser'spasswordchanged.

Thenovelfeatureof thisproactivepasswordchangeris theuseof averyflexible,verypow-

erful interpretedlittle languagefor representingthetests.Thelittle languagedescribestestswith

associatederrormessages;eachtestis composedof anycombinationof variables,constants(num-

bersandstrings),equalityandpatternmatchingrelations,andfile andprogramoutputscanningin-

structions.

Variablesaresetin oneof threeways:eitherby theprogramat start-up,by thesystemad-

ministrator,or by analysisof a systemdatabase;thelatter two areexplicitly donein theconfigura-

tion file. Variablesareof typenumber or of type string, and their value is referenced by prefixing

the variable's name with "%". For example, the variable "u" contains the user's name, so

%u

accesses the user's name. Note that the access takes the form of textual substitution.

At times, only part of the value of the variable may be useful; for example, one could test

for the top-level domain of the host. In this case, only the last 3 characters of the value of the vari-

able "d" are desired. To make obtaining them simple, several optional feilds may be added to the

variable reference. These take the form

% [-] [b][.e] [f] v

where the quantities in brackets "[]" are optional, and mean:

- If the variable is a string variable, then its value will be reversed; if the variable is a number, its

value will be the variable's value subtracted from the password's length

b This is ignored for number variables. For string variables, it denotes the first position of the re-

turned value (the first character is at position 0); if omitted, it is the beginning of the value.

e This is ignored for number variables. For string variables, it denotes the last position of the re-

turned value; if omitted, it is the end of the value.

This is ignored for number variables. It describes how the value is to be transformed for string

values. Legal symbols are: "^" to capitalize all letters, "*" to make all letters lower case, "r' to

capitalize the first character if it is a letter, and "#" to be the length of the variable's value.

As an example, suppose we wished to determine the second through seventh characters of

f

Page 6 of 14

name

0...9

a

b

C

d

f

h

i

1

m

Figure
r

b

e

f

type

string
number

number

number

string

string

string

string
number

string

meaning name

defined in config file n

number of alphanumeric chars o

number of alphabetic chars p

number of upper case chars q
domain name of host s

user's first name t

host name u

user's initials v

number of lower case chars w

user's middle name(s)

type

stnng

stnng

string

stung

stnng

stnng

stnng
number

number

meaning

user's full name

user's office

proposed password

current password
user's surname

user's phone number

user's login name

1 for mixed case, else 0

number of decimal digits

1. The variables are strings of characters or numbers and are accessed as "%rb.efv" where:

reverse (string variable) or subtract the value from the length of the password (number variable)

number of position of first character to access (string variable); ignored (number variable)

number of position of last character to access (string variable); ignored (number variable)

format: A capitalize all letters, * lower-case all letters, I capitalize first character if alphabetic,

value is length of string (string variable); ignored (number variable)
variable name

the user's login name reversed. (This might be combined with a trailing digit to make a password

which, for some reason, the site administrator does not wish to allow.) Then the reference to the

variable would be "%-1.6u". Similarly, if the proposed password were "g&Un3", then "%p" is

"g&Un3", "%#p" is 5 (the length of the password), "%a" is 4 (as the value of "p" has 4 alphanu-

merics), "%b" is 3, "%c" is 1, "%1" is 2, "%v" is 1 (as the value of "p" has both upper and lower

case), "%w" is 1, and "%-p" is "3nU&g".

The assignment of user names exemplifies the ways variables can be assigned to. The sim-

plest method is to use a "set" statement, as in

set : f "Matthew"

which sets the value of the variable f to the string "Matthew". More effective in this context is to

use the "gecos" statement to parse the user information in the password database file.So, if that file

contained the field "Matt Bishop,N230-102,6921" then the following line would assign "Matt" to

f, "Bishop" to s, "N230-102" to o, and "6921" to t:

gecos: "%s %s,%s,%s" f s o t

If the format does not match the database entry, the line is skipped and successive gecos lines are

tried until a match is found. As these database fields are very often inconsistent, this allows the sys-

tem administrator to try a number of different formats.

Figure 1 summarizes the variables, their types, and their settings. Note that values of"a",

Page 7 of 14

test "'- '(' test ')'
'!' test

test '&' test

test '1' test

number '==' number

exstring '==' string

exstring '=-' pattern

pass if test is passed

negate result of test

pass if both tests pass

pass if either test passes

pass if the numbers are (arithmetically) equal

pass if (any line of) exstring is identical to string

pass if (any line of) exstring matches pattern

exstring ::= string exstring is the given string

I '[' filename ']' exstring is the set of lines in the file

I ' {' program ' }' exstring is the set of lines of output

Figure 2. The BNF defining the tests• Note that when exstring is the contents of a file or the output

of a program, the tests using it are iterated once for each line of the file. Also note that pattern

matching is done using the pattern matcher in the system library; this is invariably the same one as

used by the system editor ed(1) [1][4].

"b", "c", 'T', "v", and "w" all depend upon the value of "p".

The syntax of the tests is summarized in Figure 2, and is very straightforward. Because of

the complexity of most pattern matching expressions, the pattern matchers use the system's stan-

dard library routines to determine if a value matches a pattern; this means that a system adminis-

trator who uses a text editor need not learn a new pattern matching system• The file and program

scanning instructions compare a value to the contents of a file or the output of any program, or

match the contents of the file or output of the program to a pattern written in the style of the sys-

tem's text editor. Comparison is done line by line, and if any line satisfies the relationship, the test

succeeds. Variables in the file names and program commands are replaced before the files or com-

mands are executed, so it is easy to condition the test, the files, and the programs upon the user's

or group's identity.

Some example tests will show how constraints on acceptable passwords are implemented.

"%p"=~" [0-9] [A-Za-z] {3} [0-9] {3}"

succeeds if the password looks like a California automobile license plate number (a digit followed

by three letters followed by three digits); it matches the proposed password (%p) against an appro-

priate pattern;

"%*p"=~"\ (%u\) *"

succeeds ifthepassword is0 or more repetitionsof the user'slogin name; itfirstmaps allalpha-

beticcharacters in the proposed password to lower case (% "13), then matches them against the pat-

Page 8 of 14

tern composed of the login name (%u) repeated 0 or more times;

"%^p"=="%-^ i"

succeeds ifthepassword isthesame astheuser'slastname reversed;thistestmakes allalphabetic

charactersinthe proposed password upper case (%^p),does the same forthereversalof the user's

last name (%- ^ 1), and tests for equality.

"%p"=~"^ [a-z] *$" I"%p "=~'^ [A-Z] *$"

succeeds iftheproposed password isa monocase alphabeticsequence;and

(%#p==%b) & (%v==0)

also succeeds if the proposed password is a monocase alphabetic sequence, but by comparing the

length of the proposed password (% #p) to the number of alphabetic characters in it (%b), and if the

password is composed only of alphabetic characters, tests if they are all of the same case (%v is 1

if so);

[/usr/words/dict]=="%*p"

succeeds if the word is in the system dictionary (the file/usr/dict/words). This does not, however,

catch words like "waters" which are not in that dictionary.

{echo %p I spell}==""

succeeds ifthe word isan English word; the password isgiven as input to the system spelling

checker, if found, the checker returns nothing. This would catch plurals, participles, and other

transformations of the words in the system dictionary.

[/etc/pwbad/%u]=="%*p"

compares the password against the words in the user-specific word list named by the user's login

and in the directory/etc/pwbad. This is an example of how to exclude user-dependent information.

Error messages may follow each test; if any test succeeds, the appropriate error message is

printed. This allows users to be told precisely why their selection is unacceptable, rather than lim-

iting the response to a more generic "password not suitable; try again." So the lines

containing the above tests would be better written in the configuration file as:

"%p"=~"[0-9] [A-Za-z] {3} [0-9] {3}"cannot use license plate numbers

"%*p"=~"\ (%u\) *" cannot use (repeated) login name

"%^p"=="%-^i" cannot use last name reversed

Page 9 of 14

"%p"=~"^[a-z]*$"i"%p"=~"^[A-Z]*$'cannot use small letters only

(%#p==%b)&(%v==0) cannot use small letters only

[/usr/words/dict]=="%*p" cannot use dictionary word

{echo %p i spell}=="" cannot use English word

[/etc/pwbad/%u]=="%*p" cannot use user-specific information

and if, for example, a user tried to change his password to "IPLK109" the error message "cannot

use license plate numbers" would be printed.

We should note that the "set" statement mentioned earlier may also use the output of a pro-

gram or a file; in such cases, the variable is assigned the contents of the first line as its value. For

example,

set: 0 { groups I tr ' ' ',' }

sets the variable "0" to a comma-separated list of groups to which the user belongs.

The configuration file provides one additional control relevant to password testing. On

UNIX-based systems, only the first 8 characters of the typed password are significant [2]; hence,

the typed password "ambiguous" is passed to the program as "ambiguou". If the naive approach to

string comparison were taken, this word would fail the test

[/usr/words/dict]=="%*p"

even though the word "ambiguous" is in the dictionary and, in fact, is therefore easily guessed. To

handle this, the password changer treats all string comparisons as testing for matches in the first 8

characters. The "sigchar" statement can be used to reset this number; for example,

sigchar : 6

causes the program to treat all string comparisons as testing for matches in the first 6 characters. If

the number of significant characters is set to 0, the length of the password is used. (Note that on

UNIX systems, the program will never obtain more than 8 characters from the user's typed pass-

word due to the way the library input routine works. Hence it makes no sense to increase this be-

yond 8.)

For compatibility with the Berkeley password changing program, the proactive password

changer also has the ability to change the gecos (user information) field of the password database

file. The "setgecos" statement works like the "gecos" statement, except that rather than assign val-

ues to the variables after the format statement, the user is prompted for the value; the result is then

Page 10 of 14

formattedusingtheformat stringandwritten to thegecosfield.A "forcegecos"statementis pro-

vided for thosecaseswhereno"setgecos"statementformatmatchestheformatof thedatain the

gecosfield; this statementpromptstheuserfor therequisiteinformation,which is thenwritten to

thefile usingthespecifiedformat.

A sophisticatedloggingmechanismis availableto aid systemmonitoring,debugging,and

testselection.In additionto anysystemmessages(suchasunavailablefilesor corruptpassword

files), theconfigurationfile maybesetto log:

• the user executing the program, the user whose password is being changed (note these two may

be different if the superuser executes the program), and the password file containing the pass-

word being changed. This allows monitoring the frequency of changes, and can be used to im-

plement a password aging scheme if desired.

• the success or failure of the attempted change and, if the latter, the specific test passed. This

enables system managers to determine which tests are most useful and, if necessary, circulate

a memo reminding users that passwords of certain types are easily guessed. Note that this;

records neither the user whose password is being changed nor the rejected password.

• debugging information, indicating the success or failure of each test, the values of variables,

and other useful information useful for debugging both the program and the tests. Given the

amount of information produced, it is strongly recommended this mode not be used in produc-

tion.

• syntax errors in the tests.

Logging information can be sent to any combination of the standard error output, a file, the

input of a program, or the system logging facility. This flexibility allows syntax errors to be mailed

to all system administrators, and user and success/failure information to be logged to the system

logging facility. Hence system administrators can be notified of emergencies without being both-

ered by day-to-day information.

5. Experiences

Experience with this program is somewhat limited, but is very encouraging. It has been in

use at the Numerical Aerodynamic Simulation facility's workstation subsystem (composed of

workstations including Suns 3 and IRISes4). No users have complained or commented about the

3. Sun is a trademark of Sun Microsystems, Inc.
4. IRIS is a trademark of Silicon Graphics, Inc.

Page 11 of 14

passwordprogram,which indicatesthateithertheyhavenot changedtheir passwordfor thepast

yearor havenotnoticedthechange(whichwasnotpublicly announced).This siteperiodicallyruns

a passwordcrackerwhich attemptsto guesspasswordsusingseveralvery largedictionariesand

word lists; to date,noneof theuserswho havechangedtheir passwordusingtheproactivepass-

word changerhavehadtheir passwordsguessedcorrectly.

Themostseriousproblemwith theproactivepasswordchangerprovedto bethedependen-

cy of thepatternmatchingschemeupontheoperatingsystemversion.As it usesthe underlying

patternmatcherof thesystem,it issensitivetodifferencesin theUNIX SystemV patternmatching

languageandthe4.3BerkeleySoftwareDistributionUNIX patternmatchinglanguage;specifical-

ly, theconfigurationfiles for SystemV basedsystemsare(usually)incompatiblewith theconfig-

urationfiles for 4.3 BSD basedsystems.Hencesystemadministratorsmustbecareful thattheir

patternsin thetestsarecorrectlywritten.

6. Conclusions

Theexperiencesofar appearsto justify theclaim thattheconceptof checkingaproposed

passwordfor suitabilitybeforeallowingit to becomethepasswordis atleastasgoodasattempting

to guesspasswordsaftertheyhavebeenchanged.Thusfar,whenareasonableconfigurationfile is

used,thepasswordsselectedit havebeen,for all practicalpurposes,unguessable.Thiseliminates

thenecessityof badgeringtheuserto changeaneasily-guessedpassword,or theresentmentof that

userwhenasystemadministratorchangesthepasswordfor him.Further,thereis awindow of vul-

nerabilitybetweenthefirst change(to aneasily-guessedpassword)andthesecond(whentheuser

or systemadministratorchangesit) thatanattackercouldexploit; theproactivepasswordchanger

eliminatesthiscompletely.But givenhumannature,logic is ofteneminentlyreasonable,complete-

ly unassailable,anddeadwrong; somoretestingis necessaryto validatetheclaim thattheproac-

tive changeris asgoodasattemptingto crackpasswordsafter thechange.

Theconceptbeinglaudable,whatcanbesaidabouttheprogramimplementingit? This first

effort hasseveralshortcomings,the major one being the incompatibility of configurationfiles

acrossdifferentversionsof theoperatingsystem.Ideally,oneshouldbeableto specifyin thecon-

figurationfile whichpatternmatcher(SystemV or 4.3BSD)is to beused;however,asbothimple-

mentationsare legally protected,this will haveto await creationof public-domainversions.An

alternativewouldbeto usetheGNU patternmatcher,butthatwouldrequiresystemadministrators

to learnanewpatternmatchinglanguage(exceptfor thosewhouseGNU softwarealready).

Page12of 14

Thelittle languageusedtorepresentthetestsisveryprimitiveandshouldbeexpandedcon-

siderably.Specifically,inequality constructsshouldbe added,and someother variableswould

makewriting testseasier(for example,variablesfor thenumberof control andpunctuationchar-

acterswouldbevery useful).Also, currentlyeachtestcantakeatmostoneline; while themaxi-

mum line length is generous(currently 1024characters),lines that long are unreadableand

uneditableby mostUNIX texteditors,soafacility to split onetestoverseverallinesshouldbeadd-

ed.Finally, acapabilityto give inputdirectly to programsis necessary.In thetest

{echo %P l spell}==""

the proposed password is used as a command-line argument, making it potentially visible to the

process status listing program ps(1). A construct must be added to eliminate this visibility.

The "gecos" and "setgecos" statements are not very sophisticated in their analysis of the

user information; specifically, the trailing "Jr." or "Sr." in a name like "Bruce Partington, Jr." will

cause "Bruce" to be treated as the first name, "Partington" as the middle name, and "Jr." as the last

name. A more complex analysis routine should be added, or a better mechanism for analyzing the

user information should be written.

Finally, the error messages currently do not allow any variables to be interpolated. The abil-

ity to do so would allow a more personalized, detailed error message which could be tailored to the

particular rejected password as well as the test passed. This ability will be added in future imple-

mentations.

Acknowledgements: The research leading up to this work, and the work itself, were supported in

part by grant NAG 2-628 from the National Aeronautics and Space Administration to Dartmouth

College, and in part by a Burke Award from Dartmouth College. Thanks to Dan Klein of the Soft-

ware Engineering Institute and Michele Crabb of Computer Sciences Corporation (contractor for

the NAS Project), both of whom gave me excellent feedback on the implementation; to Michele

and Robert Van Cleef of NASA, for installing and maintaining it on the NAS workstations, and to

Dan, for encouraging me to write this paper, and having infinite patience waiting for it!

References

[1] System V Interface Definition Issue 2, Volume 2, AT&T Bell Laboratories, Indianapolis, IN

(1986) pp. 55-64.

Page 13 of 14

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

M. Bishop, "An Application of a Fast Data Encryption Standard Implementation," Com-

puting Systems 1(3) (Summer 1988) pp. 221-254.

M. Bishop, "Password Checking Techniques," Proceedings of the Workshop on Computer

Security Incident Handling (June 1990) pp. HI-D- 1.

UNIX User's Manual Reference Guide, 4.3 Berkeley Software Distribution, Virtual VAX-11

Version, Computer Systems Research Group, Computer Science Division, Department of

Electrical Engineering and Computer Science, University of California, Berkeley, CA

(Apr. 1986).

C. Coombs, R. Dawes, and A. Tversky, Mathematical Psychology: An Elementary Intro-

duction, Mathesis Press, Ann Arbor, MI (1981).

M. Crabb, "Password Security in a Large Distributed Environment," Proceedings of the

UNIX Security Workshop (1990), to appear.

Password Management Guideline, Report CSC-STD-002-85, Department of Defense

Computer Security Center, Fort George G. Meade, MD (Apr. 1985).

M. Gasser, "A Random Word Generator for Pronounceable Passwords," Technical Report

ESD-TR-75-97, Electronic Systems Divisaion, Hanscom Air Force Base, Bedford, MA

(Nov. 1975).

D. Klein, "Foiling the Cracker: A Survey of, and Improvements to, Password Security,"

Proceedings of the UNIX Security Workshop (1990), to appear.

G. Miller, "The Magical Number Seven Plus or Minus Two: Some Limits on Our Capacity

for Processing Information," Psychological Review 63 (1956) pp. 81-97.

R. Morris and K. Thompson, "Password Security: A Case History," CACM 22(11) (Nov.

1979) pp. 594-597.

Page 14 of 14

